Skip to contents

1. download data

## 2024-10-23 12:17:16 URL:https://cf.10xgenomics.com/samples/cell-arc/1.0.0/pbmc_granulocyte_sorted_10k/pbmc_granulocyte_sorted_10k_atac_fragments.tsv.gz [2051027831/2051027831] -> "pbmc_granulocyte_sorted_10k_atac_fragments.tsv.gz" [1]
## 2024-10-23 12:17:16 URL:https://cf.10xgenomics.com/samples/cell-arc/1.0.0/pbmc_granulocyte_sorted_10k/pbmc_granulocyte_sorted_10k_atac_fragments.tsv.gz.tbi [1027204/1027204] -> "pbmc_granulocyte_sorted_10k_atac_fragments.tsv.gz.tbi" [1]
## WARNING: cannot verify costalab.ukaachen.de's certificate, issued by ‘CN=GEANT OV RSA CA 4,O=GEANT Vereniging,C=NL’:
##   Unable to locally verify the issuer's authority.
## 2024-10-23 12:17:16 URL:https://costalab.ukaachen.de/open_data/MOJITOO/PBMC-Multiom_annotation.tsv [400178/400178] -> "PBMC-Multiom_annotation.tsv" [1]
## 2024-10-23 12:17:18 URL:https://cf.10xgenomics.com/samples/cell-arc/1.0.0/pbmc_granulocyte_sorted_10k/pbmc_granulocyte_sorted_10k_filtered_feature_bc_matrix.h5 [162282142/162282142] -> "pbmc_granulocyte_sorted_10k_filtered_feature_bc_matrix.h5" [1]

2. library

## Warning: package 'BiocGenerics' was built under R version 4.1.1
## Warning: package 'S4Vectors' was built under R version 4.1.3
## Warning: package 'IRanges' was built under R version 4.1.3
## Warning: package 'GenomeInfoDb' was built under R version 4.1.3
## Warning: package 'Biobase' was built under R version 4.1.3
## Warning: package 'data.table' was built under R version 4.1.3
## Warning: package 'Matrix' was built under R version 4.1.3
## Warning: package 'magrittr' was built under R version 4.1.3
## Warning: package 'stringr' was built under R version 4.1.3
## Warning: package 'AnnotationDbi' was built under R version 4.1.3
## Setting default genome to Hg38.
## Setting default number of Parallel threads to 30.

3. Create ArchR proj

inputFiles <- "pbmc_granulocyte_sorted_10k_atac_fragments.tsv.gz"
ArrowFiles <- createArrowFiles(inputFiles = inputFiles,
                               sampleNames = "pbmc",
                               minTSS = 0, ##4
                               filterFrags = 0, ## 1000
                               addTileMat = T,
                               addGeneScoreMat = F)
## filterFrags is no longer a valid input. Please use minFrags! Setting filterFrags value to minFrags!
## Using GeneAnnotation set by addArchRGenome(Hg38)!
## Using GeneAnnotation set by addArchRGenome(Hg38)!
## Warning: package 'Biostrings' was built under R version 4.1.3
## Warning: package 'XVector' was built under R version 4.1.3
## ArchR logging to : ArchRLogs/ArchR-createArrows-fa26e1254d494-Date-2024-10-23_Time-12-17-47.log
## If there is an issue, please report to github with logFile!
## Cleaning Temporary Files
## 2024-10-23 12:17:47 : Batch Execution w/ safelapply!, 0 mins elapsed.
## (pbmc : 1 of 1) Determining Arrow Method to use!
## 2024-10-23 12:17:47 : (pbmc : 1 of 1) Reading In Fragments from inputFiles (readMethod = tabix), 0.001 mins elapsed.
## 2024-10-23 12:17:47 : (pbmc : 1 of 1) Tabix Bed To Temporary File, 0.001 mins elapsed.
## 2024-10-23 12:18:57 : (pbmc : 1 of 1) Successful creation of Temporary File, 1.174 mins elapsed.
## 2024-10-23 12:18:57 : (pbmc : 1 of 1) Creating ArrowFile From Temporary File, 1.174 mins elapsed.
## 2024-10-23 12:20:04 : (pbmc : 1 of 1) Successful creation of Arrow File, 2.296 mins elapsed.
## Warning: package 'gridExtra' was built under R version 4.1.3
## 2024-10-23 12:21:21 : (pbmc : 1 of 1) CellStats : Number of Cells Pass Filter = 639351 , 3.578 mins elapsed.
## 2024-10-23 12:21:21 : (pbmc : 1 of 1) CellStats : Median Frags = 5 , 3.578 mins elapsed.
## 2024-10-23 12:21:21 : (pbmc : 1 of 1) CellStats : Median TSS Enrichment = 0.099 , 3.579 mins elapsed.
## 2024-10-23 12:21:50 : (pbmc : 1 of 1) Adding Additional Feature Counts!, 4.055 mins elapsed.
## 2024-10-23 12:22:15 : (pbmc : 1 of 1) Removing Fragments from Filtered Cells, 4.474 mins elapsed.
## 2024-10-23 12:22:15 : (pbmc : 1 of 1) Creating Filtered Arrow File, 4.474 mins elapsed.
## 2024-10-23 12:23:23 : (pbmc : 1 of 1) Finished Constructing Filtered Arrow File!, 5.606 mins elapsed.
## 2024-10-23 12:23:26 : (pbmc : 1 of 1) Adding TileMatrix!, 5.653 mins elapsed.
## 2024-10-23 12:26:27 : (pbmc : 1 of 1) Finished Creating Arrow File, 8.678 mins elapsed.
## ArchR logging successful to : ArchRLogs/ArchR-createArrows-fa26e1254d494-Date-2024-10-23_Time-12-17-47.log
ArrowFiles <- "pbmc.arrow"
proj <- ArchRProject(ArrowFiles = ArrowFiles, outputDirectory = "PBMC", copyArrows = T, showLogo=F)
## Using GeneAnnotation set by addArchRGenome(Hg38)!
## Using GeneAnnotation set by addArchRGenome(Hg38)!
## Validating Arrows...
## Getting SampleNames...
## 1 
## Copying ArrowFiles to Ouptut Directory! If you want to save disk space set copyArrows = FALSE
## 1 
## Getting Cell Metadata...
## 1 
## Merging Cell Metadata...
## Initializing ArchRProject...
meta <- read.csv("PBMC-Multiom_annotation.tsv", sep="\t")

rownames(meta) <- paste0("pbmc#", (meta$barcode))

bc <- intersect(rownames(proj@cellColData), rownames(meta))
meta <- meta[bc, ]
proj <- proj[bc, ]
proj <- setCellCol(proj, meta=meta)


gene.coords <- genes(EnsDb.Hsapiens.v86, filter = ~ gene_biotype == "protein_coding")
ucsc.levels <- stringr::str_replace(string=paste("chr",seqlevels(gene.coords),sep=""), pattern="chrMT", replacement="chrM")
seqlevels(gene.coords) <- ucsc.levels
genebody.coords <- keepStandardChromosomes(gene.coords, pruning.mode = 'coarse')

mtxs <- Read10X_h5("pbmc_granulocyte_sorted_10k_filtered_feature_bc_matrix.h5")
## Genome matrix has multiple modalities, returning a list of matrices for this genome
RNA <- mtxs[["Gene Expression"]]
colnames(RNA) <- paste0("pbmc#", colnames(RNA))
RNA <- RNA[, rownames(proj@cellColData)]

inter_gene_name <- intersect(rownames(RNA), elementMetadata(genebody.coords)$gene_name)

gtfMatch <- genebody.coords[na.omit(match(rownames(RNA), genebody.coords$gene_name))]
names(gtfMatch) <- gtfMatch$gene_name


seRNA <- SummarizedExperiment(
  assays = SimpleList(counts=RNA[inter_gene_name, ]),
  rowData = gtfMatch
)
proj <- addGeneExpressionMatrix(proj, seRNA)
## ArchR logging to : ArchRLogs/ArchR-addGeneExpressionMatrix-fa26e74ac0a62-Date-2024-10-23_Time-12-26-57.log
## If there is an issue, please report to github with logFile!
## Overlap w/ scATAC = 1
## 2024-10-23 12:26:58 : 
## Overlap Per Sample w/ scATAC : pbmc=11763
## 2024-10-23 12:26:58 : 
## 2024-10-23 12:27:00 : Batch Execution w/ safelapply!, 0 mins elapsed.
## 2024-10-23 12:27:02 : Adding pbmc to GeneExpressionMatrix for Chr (1 of 23)!, 0.029 mins elapsed.
## 2024-10-23 12:27:05 : Adding pbmc to GeneExpressionMatrix for Chr (2 of 23)!, 0.07 mins elapsed.
## 2024-10-23 12:27:07 : Adding pbmc to GeneExpressionMatrix for Chr (3 of 23)!, 0.108 mins elapsed.
## 2024-10-23 12:27:10 : Adding pbmc to GeneExpressionMatrix for Chr (4 of 23)!, 0.161 mins elapsed.
## 2024-10-23 12:27:12 : Adding pbmc to GeneExpressionMatrix for Chr (5 of 23)!, 0.197 mins elapsed.
## 2024-10-23 12:27:14 : Adding pbmc to GeneExpressionMatrix for Chr (6 of 23)!, 0.233 mins elapsed.
## 2024-10-23 12:27:17 : Adding pbmc to GeneExpressionMatrix for Chr (7 of 23)!, 0.286 mins elapsed.
## 2024-10-23 12:27:20 : Adding pbmc to GeneExpressionMatrix for Chr (8 of 23)!, 0.322 mins elapsed.
## 2024-10-23 12:27:22 : Adding pbmc to GeneExpressionMatrix for Chr (9 of 23)!, 0.358 mins elapsed.
## 2024-10-23 12:27:25 : Adding pbmc to GeneExpressionMatrix for Chr (10 of 23)!, 0.41 mins elapsed.
## 2024-10-23 12:27:27 : Adding pbmc to GeneExpressionMatrix for Chr (11 of 23)!, 0.446 mins elapsed.
## 2024-10-23 12:27:29 : Adding pbmc to GeneExpressionMatrix for Chr (12 of 23)!, 0.483 mins elapsed.
## 2024-10-23 12:27:32 : Adding pbmc to GeneExpressionMatrix for Chr (13 of 23)!, 0.535 mins elapsed.
## 2024-10-23 12:27:35 : Adding pbmc to GeneExpressionMatrix for Chr (14 of 23)!, 0.57 mins elapsed.
## 2024-10-23 12:27:37 : Adding pbmc to GeneExpressionMatrix for Chr (15 of 23)!, 0.606 mins elapsed.
## 2024-10-23 12:27:40 : Adding pbmc to GeneExpressionMatrix for Chr (16 of 23)!, 0.658 mins elapsed.
## 2024-10-23 12:27:42 : Adding pbmc to GeneExpressionMatrix for Chr (17 of 23)!, 0.694 mins elapsed.
## 2024-10-23 12:27:44 : Adding pbmc to GeneExpressionMatrix for Chr (18 of 23)!, 0.731 mins elapsed.
## 2024-10-23 12:27:47 : Adding pbmc to GeneExpressionMatrix for Chr (19 of 23)!, 0.782 mins elapsed.
## 2024-10-23 12:27:49 : Adding pbmc to GeneExpressionMatrix for Chr (20 of 23)!, 0.819 mins elapsed.
## 2024-10-23 12:27:52 : Adding pbmc to GeneExpressionMatrix for Chr (21 of 23)!, 0.855 mins elapsed.
## 2024-10-23 12:27:55 : Adding pbmc to GeneExpressionMatrix for Chr (22 of 23)!, 0.905 mins elapsed.
## 2024-10-23 12:27:57 : Adding pbmc to GeneExpressionMatrix for Chr (23 of 23)!, 0.941 mins elapsed.
## ArchR logging successful to : ArchRLogs/ArchR-addGeneExpressionMatrix-fa26e74ac0a62-Date-2024-10-23_Time-12-26-57.log

4. RNA & ATAC dimension reductions

proj <- addIterativeLSI(ArchRProj = proj,
                        useMatrix = "TileMatrix",
                        name = "IterativeLSI",
                        iterations = 2,
                        varFeatures = 25000,
                        dimsToUse = 1:30)
## Checking Inputs...
## ArchR logging to : ArchRLogs/ArchR-addIterativeLSI-fa26e48c33538-Date-2024-10-23_Time-12-28-01.log
## If there is an issue, please report to github with logFile!
## 2024-10-23 12:28:01 : Computing Total Across All Features, 0 mins elapsed.
## 2024-10-23 12:28:02 : Computing Top Features, 0.016 mins elapsed.
## ###########
## 2024-10-23 12:28:04 : Running LSI (1 of 2) on Top Features, 0.046 mins elapsed.
## ###########
## 2024-10-23 12:28:04 : Sampling Cells (N = 10000) for Estimated LSI, 0.047 mins elapsed.
## 2024-10-23 12:28:04 : Creating Sampled Partial Matrix, 0.047 mins elapsed.
## 2024-10-23 12:28:33 : Computing Estimated LSI (projectAll = FALSE), 0.523 mins elapsed.
## 2024-10-23 12:29:47 : Identifying Clusters, 1.772 mins elapsed.
## 2024-10-23 12:30:02 : Identified 6 Clusters, 2.016 mins elapsed.
## 2024-10-23 12:30:02 : Saving LSI Iteration, 2.016 mins elapsed.
## 2024-10-23 12:30:16 : Creating Cluster Matrix on the total Group Features, 2.247 mins elapsed.
## 2024-10-23 12:30:30 : Computing Variable Features, 2.474 mins elapsed.
## ###########
## 2024-10-23 12:30:30 : Running LSI (2 of 2) on Variable Features, 2.477 mins elapsed.
## ###########
## 2024-10-23 12:30:30 : Creating Partial Matrix, 2.477 mins elapsed.
## 2024-10-23 12:30:59 : Computing LSI, 2.964 mins elapsed.
## 2024-10-23 12:31:22 : Finished Running IterativeLSI, 3.345 mins elapsed.
object <- CreateSeuratObject(counts=RNA, assay="RNA")
object <-  NormalizeData(object, normalization.method = "LogNormalize", scale.factor = 10000, verbose=F)
object <- FindVariableFeatures(object, nfeatures=3000, verbose=F)
object <- ScaleData(object, verbose=F)
object <-  RunPCA(object, npcs=50, reduction.name="RNA_PCA", verbose=F)

proj <- setDimRed(proj, mtx=Embeddings(object[["RNA_PCA"]]), type="reducedDims", reduction.name="RNA_PCA")
saveArchRProject(proj)
## Saving ArchRProject...
## Loading ArchRProject...
## Successfully loaded ArchRProject!
## 
##                                                    / |
##                                                  /    \
##             .                                  /      |.
##             \\\                              /        |.
##               \\\                          /           `|.
##                 \\\                      /              |.
##                   \                    /                |\
##                   \\#####\           /                  ||
##                 ==###########>      /                   ||
##                  \\##==......\    /                     ||
##             ______ =       =|__ /__                     ||      \\\
##         ,--' ,----`-,__ ___/'  --,-`-===================##========>
##        \               '        ##_______ _____ ,--,__,=##,__   ///
##         ,    __==    ___,-,__,--'#'  ==='      `-'    | ##,-/
##         -,____,---'       \\####\\________________,--\\_##,/
##            ___      .______        ______  __    __  .______      
##           /   \     |   _  \      /      ||  |  |  | |   _  \     
##          /  ^  \    |  |_)  |    |  ,----'|  |__|  | |  |_)  |    
##         /  /_\  \   |      /     |  |     |   __   | |      /     
##        /  _____  \  |  |\  \\___ |  `----.|  |  |  | |  |\  \\___.
##       /__/     \__\ | _| `._____| \______||__|  |__| | _| `._____|
## 
## 
##            ___      .______        ______  __    __  .______      
##           /   \     |   _  \      /      ||  |  |  | |   _  \     
##          /  ^  \    |  |_)  |    |  ,----'|  |__|  | |  |_)  |    
##         /  /_\  \   |      /     |  |     |   __   | |      /     
##        /  _____  \  |  |\  \\___ |  `----.|  |  |  | |  |\  \\___.
##       /__/     \__\ | _| `._____| \______||__|  |__| | _| `._____|
## 
## class: ArchRProject 
## outputDirectory: /data/sz753404/git_code/MOJITOO/vignettes/PBMC 
## samples(1): pbmc
## sampleColData names(1): ArrowFiles
## cellColData names(20): Sample TSSEnrichment ... Gex_MitoRatio
##   Gex_RiboRatio
## numberOfCells(1): 11763
## medianTSS(1): 13.659
## medianFrags(1): 13486

5. RUN MOJITOO

proj <- loadArchRProject("PBMC", showLogo=F)
## Successfully loaded ArchRProject!
proj <- mojitoo(
     object=proj,
     reduction.list = list("RNA_PCA", "IterativeLSI"),
     dims.list = list(1:50, 1:30),
     is.reduction.center=T,
     is.reduction.scale=T,
     reduction.name='MOJITOO'
)
## processing RNA_PCA
## adding IterativeLSI
## 1 round cc 29
proj <- addUMAP(
    ArchRProj = proj,
    reducedDims = "MOJITOO",
    name = "MOJITOO_UMAP",
    nNeighbors = 30,
    minDist = 0.5,
    metric = "cosine"
)
## 12:31:47 UMAP embedding parameters a = 0.583 b = 1.334
## 12:31:47 Read 11763 rows and found 29 numeric columns
## 12:31:47 Using Annoy for neighbor search, n_neighbors = 30
## 12:31:47 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 12:31:48 Writing NN index file to temp file /tmp/Rtmpbwz0TN/filefa26e6f841aa7
## 12:31:48 Searching Annoy index using 64 threads, search_k = 3000
## 12:31:48 Annoy recall = 100%
## 12:31:49 Commencing smooth kNN distance calibration using 64 threads with target n_neighbors = 30
## 12:31:51 Initializing from normalized Laplacian + noise (using irlba)
## 12:31:51 Commencing optimization for 200 epochs, with 461100 positive edges
## 12:31:57 Optimization finished
## 12:31:57 Creating temp model dir /tmp/Rtmpbwz0TN/dirfa26e2260917e
## 12:31:57 Creating dir /tmp/Rtmpbwz0TN/dirfa26e2260917e
## 12:31:58 Changing to /tmp/Rtmpbwz0TN/dirfa26e2260917e
## 12:31:58 Creating /data/sz753404/git_code/MOJITOO/vignettes/PBMC/Embeddings/Save-Uwot-UMAP-Params-MOJITOO-fa26e2cf20242-Date-2024-10-23_Time-12-31-57.tar

6. UMAP of True labels

p <- plotEmbedding(ArchRProj = proj, colorBy = "cellColData", name = "annotation", embedding = "MOJITOO_UMAP")
## ArchR logging to : ArchRLogs/ArchR-plotEmbedding-fa26e2e6ed43f-Date-2024-10-23_Time-12-31-58.log
## If there is an issue, please report to github with logFile!
## Getting UMAP Embedding
## ColorBy = cellColData
## Plotting Embedding
## 1 
## ArchR logging successful to : ArchRLogs/ArchR-plotEmbedding-fa26e2e6ed43f-Date-2024-10-23_Time-12-31-58.log
p

7. sessionInfo

## R version 4.1.0 (2021-05-18)
## Platform: x86_64-conda-linux-gnu (64-bit)
## Running under: Rocky Linux 8.10 (Green Obsidian)
## 
## Matrix products: default
## BLAS/LAPACK: /data/sz753404/miniconda3/envs/schema/lib/libopenblasp-r0.3.21.so
## 
## locale:
##  [1] LC_CTYPE=en_US.utf-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.utf-8    
##  [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=en_US.utf-8   
##  [7] LC_PAPER=de_DE.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] grid      stats4    parallel  stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] uwot_0.1.14                       nabor_0.5.0                      
##  [3] gridExtra_2.3                     Rsamtools_2.8.0                  
##  [5] BSgenome.Hsapiens.UCSC.hg38_1.4.3 BSgenome_1.60.0                  
##  [7] rtracklayer_1.52.1                Biostrings_2.62.0                
##  [9] XVector_0.34.0                    EnsDb.Hsapiens.v86_2.99.0        
## [11] ensembldb_2.16.4                  AnnotationFilter_1.16.0          
## [13] GenomicFeatures_1.44.2            AnnotationDbi_1.56.2             
## [15] stringr_1.5.0                     ggsci_2.9                        
## [17] SeuratObject_4.1.3                Seurat_4.3.0                     
## [19] ArchR_1.0.1                       magrittr_2.0.3                   
## [21] rhdf5_2.36.0                      Matrix_1.5-3                     
## [23] data.table_1.14.8                 SummarizedExperiment_1.22.0      
## [25] Biobase_2.54.0                    GenomicRanges_1.44.0             
## [27] GenomeInfoDb_1.30.1               IRanges_2.28.0                   
## [29] S4Vectors_0.32.4                  BiocGenerics_0.40.0              
## [31] MatrixGenerics_1.4.3              matrixStats_0.62.0               
## [33] ggplot2_3.4.1                     MOJITOO_1.0                      
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.3           scattermore_0.8          ragg_1.3.3              
##   [4] tidyr_1.2.1              bit64_4.0.5              knitr_1.42              
##   [7] irlba_2.3.5.1            DelayedArray_0.18.0      rpart_4.1.19            
##  [10] KEGGREST_1.34.0          RCurl_1.98-1.10          doParallel_1.0.16       
##  [13] generics_0.1.3           cowplot_1.1.1            RSQLite_2.3.0           
##  [16] RANN_2.6.1               future_1.28.0            bit_4.0.5               
##  [19] spatstat.data_3.0-0      xml2_1.3.3               httpuv_1.6.5            
##  [22] assertthat_0.2.1         xfun_0.37                hms_1.1.2               
##  [25] jquerylib_0.1.4          evaluate_0.20            promises_1.2.0.1        
##  [28] fansi_1.0.4              restfulr_0.0.13          progress_1.2.2          
##  [31] dbplyr_2.3.1             igraph_1.4.1             DBI_1.1.3               
##  [34] htmlwidgets_1.6.1        spatstat.geom_3.0-3      purrr_1.0.1             
##  [37] ellipsis_0.3.2           ks_1.13.3                dplyr_1.1.0             
##  [40] backports_1.4.1          biomaRt_2.48.3           deldir_1.0-6            
##  [43] vctrs_0.5.2              Cairo_1.5-15             here_1.0.1              
##  [46] ROCR_1.0-11              abind_1.4-5              withr_2.5.0             
##  [49] cachem_1.0.7             Gviz_1.36.2              progressr_0.10.1        
##  [52] checkmate_2.1.0          sctransform_0.3.5        GenomicAlignments_1.28.0
##  [55] prettyunits_1.1.1        mclust_5.4.9             goftest_1.2-3           
##  [58] cluster_2.1.4            lazyeval_0.2.2           crayon_1.5.2            
##  [61] hdf5r_1.3.5              spatstat.explore_3.0-5   labeling_0.4.2          
##  [64] pkgconfig_2.0.3          nlme_3.1-160             ProtGenerics_1.26.0     
##  [67] nnet_7.3-18              rlang_1.0.6              globals_0.16.1          
##  [70] lifecycle_1.0.3          miniUI_0.1.1.1           filelock_1.0.2          
##  [73] BiocFileCache_2.0.0      dichromat_2.0-0.1        rprojroot_2.0.3         
##  [76] polyclip_1.10-4          lmtest_0.9-40            Rhdf5lib_1.16.0         
##  [79] zoo_1.8-10               base64enc_0.1-3          ggridges_0.5.3          
##  [82] GlobalOptions_0.1.2      png_0.1-8                viridisLite_0.4.1       
##  [85] rjson_0.2.20             bitops_1.0-7             KernSmooth_2.23-20      
##  [88] rhdf5filters_1.4.0       blob_1.2.3               shape_1.4.6             
##  [91] parallelly_1.32.1        spatstat.random_3.0-1    jpeg_0.1-9              
##  [94] scales_1.2.1             memoise_2.0.1            plyr_1.8.8              
##  [97] ica_1.0-3                zlibbioc_1.40.0          hdrcde_3.4              
## [100] compiler_4.1.0           BiocIO_1.2.0             RColorBrewer_1.1-3      
## [103] clue_0.3-60              fitdistrplus_1.1-8       cli_3.6.0               
## [106] listenv_0.8.0            patchwork_1.1.2          pbapply_1.7-0           
## [109] htmlTable_2.3.0          Formula_1.2-4            MASS_7.3-58.1           
## [112] tidyselect_1.2.0         stringi_1.7.12           textshaping_0.3.6       
## [115] highr_0.10               yaml_2.3.7               latticeExtra_0.6-29     
## [118] ggrepel_0.9.3            sass_0.4.5               VariantAnnotation_1.38.0
## [121] tools_4.1.0              future.apply_1.9.0       circlize_0.4.13         
## [124] rstudioapi_0.14          foreach_1.5.2            foreign_0.8-84          
## [127] farver_2.1.1             Rtsne_0.16               digest_0.6.31           
## [130] pracma_2.3.8             shiny_1.7.2              Rcpp_1.0.10             
## [133] later_1.3.0              RcppAnnoy_0.0.19         fda_5.5.1               
## [136] httr_1.4.5               biovizBase_1.40.0        ComplexHeatmap_2.11.1   
## [139] colorspace_2.1-0         XML_3.99-0.13            fs_1.6.1                
## [142] tensor_1.5               rainbow_3.6              reticulate_1.25         
## [145] splines_4.1.0            spatstat.utils_3.1-0     pkgdown_2.0.3           
## [148] sp_1.5-1                 plotly_4.10.1            systemfonts_1.0.4       
## [151] xtable_1.8-4             jsonlite_1.8.4           fds_1.8                 
## [154] corpcor_1.6.10           R6_2.5.1                 Hmisc_5.0-1             
## [157] ramify_0.3.3             pillar_1.8.1             htmltools_0.5.4         
## [160] mime_0.12                glue_1.6.2               fastmap_1.1.1           
## [163] BiocParallel_1.28.3      deSolve_1.32             codetools_0.2-19        
## [166] pcaPP_2.0-1              mvtnorm_1.1-3            utf8_1.2.3              
## [169] lattice_0.20-45          bslib_0.4.2              spatstat.sparse_3.0-0   
## [172] tibble_3.2.0             curl_5.0.0               leiden_0.4.2            
## [175] gtools_3.9.4             survival_3.5-5           rmarkdown_2.20          
## [178] desc_1.4.2               munsell_0.5.0            GetoptLong_1.0.5        
## [181] GenomeInfoDbData_1.2.7   iterators_1.0.14         reshape2_1.4.4          
## [184] gtable_0.3.1